A model of short term cardiovascular regulation

Abstract
A model of short term cardiovascular regulation was discussed. The physiological response to acceleration stress were studied. Results showed that a supine to standing transition leads to a substantial drop in central arterial pressure (CAP), cardiac output (CO), central venous pressure (CVP) and cerebral perfusion unless reflexes are active.

Index Keywords
Blood, Brain, Computer simulation, Vectors; Blood pressure; Cardiology

References
- Guyton, A.C., Hall, J.E.
- Latchman, S.A., Greenlaw, W.S.R.
 The Incidence of GLOC in the Canadian Forces
- Burton, R.R.
 Mathematical Models for Predicting G-Duration Tolerances
- Rothe, C.F.
 Reflex Control of Veins and Vascular Capacitance

Collins, R., Maccario, J.A.

Blood Flow in the Lung
(1879) *J. Biomechanics*, 12, pp. 373-395.

Walsh, C., Cirovic, S., Fraser, W.D.

Numerical Issues in Cardiovascular Models

Melchior, F.M., Srinivasan, R.S., Charles, J.B.

Mathematical Modeling of Human Cardiovascular System for Simulation of Orthostatic Response

Hirsch, C.

Correspondence Address
Welsh C.; Dept. of Mechanical Engineering; Ryerson Polytechnic University Toronto, Ont., Canada

Editors: Kamm R.D., Schmid-Schoenbein G.W., Atesian G.A., Hefzy M.S.

Sponsors: Bioengineering Division, ASME; Food, Pharmaceutical and Bioengineering Division, AIChE; Biomedical Engineering Society; United States National Committee on Biomechanics

Conference Name: Proceedings of the 2001 Bioengineering Conference
Conference Date: 27 June 2001 through 1 July 2001
Conference Location: Snowbird, UT
Conference Code: 61797

ISSN: 10716947
CODEN: ASMBE
Language of Original Document: English
Abbreviated Source Title: ASME Bioeng Div Publ BED
Document Type: Conference Paper
Source: Scopus
Cirovic, S.a, Walsh, C.b, Fraser, W.D.a

Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test

a Defence Research/Development Canada, Toronto, Ont., Canada
b Flat Water Solutions Inc., Toronto, Ont., Canada

Abstract
The role of the cerebral venous bed in the cranial volume-pressure test was examined by means of a mathematical model. The cerebral vascular bed was represented by a single arterial compartment and two venous compartments in series. The lumped-parameter formulation for the vascular compartments was derived from a one-dimensional theory of flow in collapsible tubes. It was assumed in the model that the cranial volume is constant. The results show that most of the additional volume of cerebrospinal fluid (ΔV_{CSF}) was accommodated by collapse of the cerebral venous bed. This profoundly altered the venous haemodynamics and was reflected in the cranial pressure $PCSF$. The cranial volume-pressure curve obtained from the model was consistent with experimental data; the curve was flat for $0 \leq \Delta V_{CSF} \leq 20$ml and $35 \leq \Delta V_{CSF} \leq 40$ml, and steep for $20 \leq \Delta V_{CSF} \leq 35$ml and $\Delta V_{CSF} \geq 40$ ml. For $\Delta V_{CSF} > 25$ ml and $PCSF > 5.3$ kPa (40 mmHg), cerebral blood flow dropped. When $PCSF$ was greater than the mean arterial pressure, all the veins collapsed. The conclusion of the study was that the shape of the cranial volume-pressure curve can be explained by changes in the venous bed caused by various degrees of collapse and/or distension.

Author Keywords
Cerebral veins; Cerebrospinal fluid; Cranial pressure; Mathematical model

Index Keywords
Body fluids, Mathematical models, Nonlinear systems, Parameter estimation, Pressure effects; Volume-pressure test; Blood vessels; brain blood flow, pressure volume curve, vein compliance; Intracranial Pressure, Models, Neurological

References
- Attinger, E.O.
 'The cardiovascular system'
- Auer, L.M., McKenzie, E.T.
 'Physiology of the cerebral venous system'
- Bosnjak, R., Kordas, M.
 'Circulatory effects of internal jugular vein compression: A computer simulation study'
- Brook, B.
'The effect of gravity on the haemodynamics of the giraffe jugular vein'
(1997),

Chopp, M., Portnoy, H.D., Branch, M.S.
'Hydraulic model of the cerebrovascular bed. Understanding the volume-pressure test'

Cirovic, S., Walsh, C., Fraser, W.D.
'A mathematical model of cerebral perfusion subjected to Gz acceleration'

Cirovic, S., Walsh, C., Fraser, W.D.
'A mechanical model of cerebral circulation during sustained acceleration'

Collins, R., Maccario, J.A.
'Blood flow in the lung'

Constantinesku, V.N.
'Steady parallel flow of incompressible fluids'

Ekstedt, J.
'CSF hydrodynamic studies in man: 2 Normal hydrodynamic variables related to CSF pressure and flow'

Fung, Y.C.
'Blood flow in arteries'

Guyton, A.C., Hall, J.E.
'The circulation'

'Arterial cerebrospinal and venous pressures in man during cough and strain'

Kamm, R.D., Pedley, T.J.
'Flow in collapsible tubes: A brief review'
Ladurner, M., Auer, L.M.
'Alterations of the cerebral blood volume'

Langfitt, T.W., Kassel, N.F., Weinstein, J.D.
'Cerebral blood flow with intracranial hypertension'

Luce, J.M., Huseby, J.S., Kirk, W., Butler, J.
'A Starling resistor regulates cerebral venous outflow in dogs'

Marmarou, A., Shulman, K., LaMorgese, J.
'Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system'

Marmarou, A., Shulman, K., Rosende, R.M.
'A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics'

Miller, J.D., Stanek, A., Langfitt, T.W.
'Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension'

Moreno, A.H., Katz, A.I., Gold, L.D., Reddy, R.V.
'Mechanics of distension of dog veins and other very tin-walled tubular structures'

Nakagawa, Y., Tsuru, M., Yada, K.
'Site and mechanism of compression of the venous system during experimental hypertension'

Pedley, T.J.
'Propagation of the pressure pulse'

Pedley, T.J., Brook, B.S., Seymour, R.S.
'Blood pressure and flow rate in giraffe jugular vein'

Piechnik, S.K., Czosnyka, M., Richards, H.K., Whitfield, P.C., Pickard, J.D.
'Cerebral venous blood outflow: A theoretical model based on laboratory simulation'

Portella, G., Cormio, M., Citerio, G.
'Continuous cerebral compliance monitoring in severe head injury: Its relationship with intracranial pressure and cerebral perfusion pressure'

Portnoy, H.D., Chopp, M.
'Intracranial fluid dynamics: Interrelationship of CSF and vascular phenomena'

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.
'Root finding and nonlinear sets of equations'

Pucher, R., Kato, Y., Mokry, M., Auer, L.M.
'Cerebrovascular response to changes of cerebral venous pressure and cerebrospinal fluid pressure'

Raisis, J.E., Kindt, G.W., McGillicuddy, J.E., Giannnotta, S.L.
'The effects of primary elevation of cerebral venous pressure on cerebral haemodynamics and intracranial pressure'

Rushmer, R.F., Beckman, E.L., Lee, D.
'Protection of the cerebral circulation by the cerebrospinal fluid under the influence of radial acceleration'

Rushmer, R.F.
'Peripheral vascular control'

Sano, H., Kawase, T., Toya, S.
'The changes in the cerebral microcirculation during increased intracranial pressure'

'Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves'
• 'The effect of increased intracranial pressure on cerebral circulatory function in man'

• Shapiro, A.H.
 'Steady flow in collapsible tubes'

• Shapiro, K., Marmarou, A., Shulman, K.
 'Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I The normal pressure-volume index'

• Sheng, C., Sarwal, S.N., Watts, K.C., Marble, A.E.
 'Computational simulation of blood flow in human systemic circulation incorporating an external force field'

• Shulman, K., Verdier, G.
 'Cerebral vascular resistance changes in response to cerebrospinal fluid pressure'

• Sorek, S., Bear, J., Karni, Z.
 'Resistances and compliances of a compartmental model of the cerebrovascular system'

• Sullivan, H.G., Allison, J.D.
 'Physiology of cerebrospinal fluid'

• Takemae, T., Kosugi, Y., Ikebe, J., Kumangi, Y., Matsuyama, K., Saito, K.
 'A simulation study of intracranial pressure increment using an electric circuit model of cerebral circulation'

• Ursino, M.
 'A mathematical study of human intracranial hydrodynamics. Part 1 - The cerebrospinal fluid pressure'

• Ursino, M.
 'A mathematical study of human intracranial hydrodynamics. Part 2 - Simulation of the clinical tests'

• Ursino, M., Di Giammarco, P.
 'A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: The
Correspondence Address
Fraser W.D.; Defence Research/Development Canada Toronto, Ont., Canada; email: bill.fraser@drdc-rddc.gc.ca

ISSN: 01400118
CODEN: MBECG
Language of Original Document: English
Document Type: Article
Source: Scopus

Walsh, C.a , Cirovic, S.c , Fraser, W.D.b
Mechanical effects of acceleration on cardiovascular performance
a Department of Mechanical Engineering, Ryerson Polytechnic University, Toronto, Ont., Canada
b Def. and Civ. Inst. of Environ. Med., Toronto, Ont., Canada

Abstract
Preliminary results regarding the mechanics of cardiovascular response to the spine are presented. It is shown that the split coefficient matrix (SCM) method with a method of characteristics boundary treatment provides a robust algorithms for cardiovascular simulations. At least one valve is needed below the heart to maintain physiologically reasonable behavior, and the commonly used tube law is too compliant for distented veins.

Index Keywords
Artificial organs, Blood vessels, Cardiology, Computer simulation, Kinematics, Mathematical models, Microcirculation, Physiology; Blood flow, Blood pressure, Life support systems, Physiological reflexes; Biomechanics

References
- Anderson, D.A., Tannehill, J.C., Pletcher, R.H.

- Burton, R.R., Leverett, S.D., Michaelson, E.D.
 Man at high sustained +gz acceleration: A review

- Collins, R., Maccario, J.
 Blood flow in the lung

- Hirsch, C.

- Nader, R.
 (1992) Canada Firsts,

- Ozawa, E.T.
 (1996) A Numerical Model of the Cardiovascular System for Clinical Assessment of the Hemodynamic State,

- Pedley, T.J., Brooks, B.S., Seymour, R.S.
 Blood pressure and flow rate in the giraffe jugular vein

- Sheng, C., Sarwal, S.N., Watts, K.C., Marble, A.E.
 Computational simulation of blood flow in human systemic circulation incorporating an external force field

Negative wave reflections in pulmonary arteries

Dept. Medicine, Faculty of Medicine, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, Alta. T2N 4N1, Canada

Abstract

The pulmonary arterial branching pattern suggests that the early systolic forward-going compression wave (FCW) might be reflected as a backward-going expansion wave (BEW). Accordingly, in 11 open-chest anesthetized dogs we measured proximal pulmonary arterial pressure and flow (velocity) and evaluated wave reflection using wave-intensity analysis under low-volume, high-volume, high-volume + 20 cmH2O positive end-expiratory pressure (PEEP), and hypoxic conditions. We defined the reflection coefficient R as the ratio of the energy of the reflected wave (BEW [-]; backward-going compression wave, BCW [+]) to that of the incident wave (FCW [+]). We found that $R = -0.07 \pm 0.02$ under low-volume conditions, which increased in absolute magnitude to -0.20 ± 0.04 ($P < 0.01$) under high-volume conditions. The addition of PEEP increased R further to -0.26 ± 0.02 ($P < 0.01$). All of these BEWs were reflected from a site 3 cm downstream. During hypoxia, the BEW was maintained and a BCW appeared ($R = +0.09 \pm 0.03$) from a closed-end site 9 cm downstream. The normal pulmonary arterial circulation in the open-chest dog is characterized by negative wave reflection tending to facilitate right ventricular ejection; this reflection increases with increasing blood volume and PEEP.
Author Keywords
Hemodynamics; Lung

Index Keywords
pulmonary artery

References
- Attinger, E.O.
 Pressure transmission in pulmonary arteries related to frequency and geometry

- Bergel, D.H., Milnor, W.R.
 Pulmonary vascular impedance in the dog

- Caro, C.G., Saffman, P.G.
 Extensibility of blood vessels in isolated rabbit lungs

- Cassidy, S.S., Schwiep, F.
 Cardiovascular effects of positive end-expiratory pressure

- Collins, R., Maccario, J.A.
 Blood flow in the lungs

- Culver, B.H., Butler, J.
 Mechanical influences on the pulmonary microcirculation

 Effects of blood volume changes on characteristic impedance of pulmonary artery

- Dujardin, J.P., Stone, D.N., Paul, L.T., Pieper, H.P.
 Response of systemic arterial input impedance to volume expansion and hemorrhage

- Engelberg, J., DuBois, A.R.
Mechanics of pulmonary circulation in isolated rabbit lungs

Fourie, P.R., Coetzee, A.R., Bolliger, C.T.
Pulmonary artery compliance: Its role in right ventricular-arterial coupling

Gan, R.Z., Yen, R.T.
Vascular impedance analysis in dog lung with detailed morphometric and elasticity data

Glazier, J.B., Hughes, J.M.B., Maloney, J.E., West, J.B.
Measurements of capillary dimensions and blood volume in rapidly frozen lung

Ha, B., Lucas, C.L., Henry, G.W., Frantz, E.G., Ferreiro, J.I., Wilcox, B.R.
Effects of chronically elevated pulmonary arterial pressure and flow on right ventricular afterload

Hollander, E.H.

Hollander, E.H., Parker, K.H., Gibson, D.G., Tyberg, J.V.
Left atrial pressure perturbations are transmitted to the pulmonary artery more quickly and with less attenuation via
the heart than via the pulmonary microcirculation

Howell, J.B.L., Permutt, S., Proctor, D.F., Riley, R.L.
Effect of inflation of the lung on different parts of pulmonary vascular bed

Lieber, B.B., Li, Z., Grant, B.J.B.
Beat-by-beat changes of viscoelastic and inertial properties of the pulmonary arteries

Maloney, J.E., Rooholamini, S.A., Wexler, L.
Pressure-diameter relations of small blood vessels in isolated dog lung

McDonald, D.A.
The relationship between pulsatile pressure and flow

- Milnor, W.R.

 Aortic input impedance in normal man: Relationship to pressure wave forms

- Nichols, W.W., O'Rourke, M.F.

- Nichols, W.W., O'Rourke, M.F., Avolio, A.P., Yaginuma, T., Murgo, J.P., Pepine, C.J., Conti, C.R.
 Effects of age on ventricular-vascular coupling

- O'Rourke, M.F.
 Pressure and flow waves in systemic arteries and the anatomical design of the arterial system

- Parker, K.H., Jones, C.J.H.
 Forward and backward running waves in the arteries: Analysis using the method of characteristics

- Parker, K.H., Jones, C.J.H., Dawson, J.R., Gibson, D.G.
 What stops the flow of blood from the heart?

- Patel, D.J., Schilder, D.P., Mallos, A.J.
 Mechanical properties and dimensions of the major pulmonary arteries

- Patel, D.J., Vaishnav, R.N.
 (1980) *Basic Hemodynamics and Its Role in Disease Processes*,

- Piene, H.
 Influence of vessel distension and myogenic tone on pulmonary arterial input impedance. A study using a computer model of rabbit lung

- Piene, H.
 Pulmonary arterial impedance and right ventricular function
• Reuben, S.R.
 Compliance of the human pulmonary arterial system in disease

• Singhal, S., Henderson, R., Horsfield, K., Harding, K., Cumming, G.
 Morphometry of the human pulmonary arterial tree

• Sun, Y.H., Anderson, T.J., Parker, K.H., Tyberg, J.V.
 Wave-intensity analysis: A new approach to coronary dynamics

• Wang, J.J.

• Womersley, J.R.
 Oscillatory flow in arteries: The reflection of the pulse wave at junctions and rigid inserts in the arterial system

Correspondence Address
Tyberg J.V.; Dept. Medicine; Faculty of Medicine; Univ. of Calgary; 3330 Hospital Dr. NW Calgary, Alta. T2N 4N1, Canada; email: jtyberg@ucalgary.ca

ISSN: 03636135
CODEN: AJPPD
Language of Original Document: English
Abbreviated Source Title: Am. J. Physiol. Heart Circ. Physiol.
Document Type: Article
Source: Scopus